

Thrombogenicity of Mechanical Circulatory Support Devices: Experience and Challenges from Design to Clinical Use

Zhongjun Jon Wu, PhD
Associate Professor of Surgery
Director, Artificial Organs Laboratory
University of Maryland School of Medicine
Baltimore, Maryland

Heart Failure

- Cardiovascular disease is the leading cause of mortality globally (Lloyd-Jones et al., 2010).
- Among various forms of cardiovascular disease, heart failure (HF) affects 5.8 million patients in the US (WHO. Fact Sheet No. 317)
- The fatality rate for HF is high, with 1 in 5 people dying within
 1 year and fewer than 60 % surviving 5 years
- The estimated direct and indirect cost of HF in the United
 States for 2010 is \$39.2 billion

Treatments for Heart Failure: Lifestyle and Medicine

Lifestyle Changes

Medications:

- Angiotensin-converting enzyme (ACE) inhibitors.
- Angiotensin II receptor blockers
- Digoxin (Lanoxin)
- Diuretics
- Aldosterone antagonists

Treatments for Heart Failure

Surgery and Medical Devices

- Coronary bypass surgery
- Heart valve repair or replacement
- Implantable cardioverter-defibrillators (ICDs)
- Cardiac resynchronization therapy/ biventricular cardiac pacemaker
- Heart transplant
- Heart pumps (mechanical circulatory support devices)

Circulatory Support Device

A circulatory support device or ventricular (VAD) is a mechanical pump that's used to support heart function and blood flow in people who have weakened hearts. The device takes blood from a lower chamber of the heart and helps pump it to the body and vital organs, just as a healthy heart would.

A VAD can support heart:

- During or after surgery, until heart recovers
- While waiting for a heart transplant
- If not eligible for a heart transplant, a VAD can be a long-term solution (destination therapy).

John and Mary Gibbons

of cardiovascular medical devices can be cto the 19th century. In 1885. M. von Frey ruber (Leipzig) Built and use the first artificial ry heart-lung apparatus for organ perfusion studies.

apparatus were tested in laboratory in the first half of

Artificial Hearts and Ventricular Assist Devices

INTERMACS Registry Interagency Registry for Mechanically Assisted Circulatory Support

Table 2 Current approved and investigational surgically implanted devices for circulatory support									
Device	Mechanism	Туре	United States (FDA)	Europe (CE mark)	Anticoagulation				
Thoratec PVAD	Pneumatic, pulsatile	Paracorporeal	Approved BTT	Approved BTT	Required				
Thoratec IVAD	Pneumatic, pulsatile	Intracorporeal	Approved BTT	Approved BTT	Required				
Thoratec HeartMate XVE	Electric, pulsatile	Intracorporeal	Approved BTT, DT	Approved BTT, DT	Not required				
BerlinHeart EXCOR	Pneumatic, pulsatile	Paracorporeal	Investigational	Approved BTT	Required				
Thoratec HeartMate II	Electric, axial continuous flow	Intracorporeal	Approved BTT, DT	Approved BTT, DT	Required				
HeartWare LVAS	Electric, centrifugal continuous flow	Intracorporeal	Approved BTT	Approved BTT, DT	Required				
Levitronix/Thoratec Centrimag	Electric, centrifugal continuous flow	Extracorporeal	Approved BTD (6 h), temporary RVAD (30 days), ongoing investigation	Approved BTD, BTT	Required				
Jarvik FlowMaker	Electric, axial continuous flow	Intracorporeal	Investigational	Approved BTT, DT	Required				
Micromed DeBakey HeartAssist 5	Electric, axial continuous flow	Intracorporeal	Approved Pediatric BTT, ongoing Investigation	Approved BTT, DT	Required				
Terumo DuraHeart	Electric, centrifugal continuous flow	Intracorporeal	Investigational	Approved BTT, DT	Required				
BerlinHeart INCOR	Electric, axial continuous flow	Intracorporeal	Investigational	Approved BTT, DT	Required				
SynCardia TAH	Pneumatic, pulsatile	Intracorporeal	Approved BTT	Approved BTT	Required				
Abiomed Abiocor TAH	Electrohydraulic, pulsatile	Intracorporeal	Humanitarian IDE DT	Investigational	Required				

BTT bridge to transplant, DT destination therapy, IDE investigational device exemption, RVAD right ventricular assist device

REMATCH Trial

Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure

Optimal Medical Therapy Vs. LV Assist Device (HeartMate I)

Vs.

Table 5 Implants: June 2006	–June	2012
------------------------------------	-------	------

Focus and atte	ten Pulsatile (n = 504)		$\triangle \text{ Continuous } (n := 5,358)$		Pulsatile/Continuous	
Adverse event	Events	Rate	Events	Rate	Ratio	<i>p</i> -value
Device malfunction	119	3.20	1001160 CN	1.60	2.04	< 0.0001
Bleeding ton Voors	+ 630	17.28-	31105	9.41 n a	0. ¹ /83 n t	< 0.0001
Cardiac/vascular				Diccanig		
Right heart failure	releva	2.47	737	1.79	1.38	0.001
Myocaraial inverction	releva	0.05	30	0.07	0.75	0.47
Cardiac arrhythmlia	254	6.96——	1919	→ 4.66	1.50	< 0.0001
Pericardial drainage	64	1.75	251	0.61	2.88	< 0.0001
Hypertension ^b	118	3.24	351	0.85	3.80	< 0.0001
Arterial non-CNS thrombosis	14	0.38	74	0.18	2.14	0.001
Venous thrombotic event	59	. 1.6 <mark>2</mark>	289	0.70	2.31	< 0.0001
Alenwill On Diee	an (23 an		TIO 2992 [E	e m <u>o73e</u> c	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Infection	832	22.81 —	3302	8.01	2.85	< 0.0001
leurological dysfunction	e cons	E C 3 42 1 (CES 764† †	nrompos	S 208	\bigcirc 0.0001
Renal dysfunction	108	2.96	582	1.41	2.10	< 0.0001
deticalships in g. It	reguire 206	es \$1210	ica <mark>l⁴Dur</mark>	mp exch	ange a	0.0001 <0.0001
Respiratory failure Wound dehiscence	200					
Psychiatric episode Ses, 10	esuits	in degat	h arzd e	nd-çışgar	2.75 2.31	<0.0001 <0.0001
information/cere	breavas	scutar in	nfaretion	n (neurol	OG.13 C	Ver0.0001

CNS, central nervous system.

^aAdverse event rates (events/100 patient months) in the first 12 months after implant for primary left ventricular assist device with implant device strategy bridge to transplant, bridge to candidacy, and destination therapy.

^bWith current reporting, identification of hypertension with continuous-flow pumps is unreliable.

LVAD Thrombosis

HeartMate II

Confirmed plus suspected pump thrombosis: 12% Starling, NEJM 2014; 370(1):33-40

15-20% pump malfunction rates, Loebe et al., ISHLT 2013

Saito et al., J Artif Organs (2013) 16:105–109

(11% for old pin-bearing, personal communication) (4% for new cone-bearing, personal communication)

LVAD Thrombosis

HeartWare HVAD

Events: 8.1%, Najjar, et al. JHLT 2014; 33:23-34

Outflow Graft Thrombosis

HeartWare HVAD Patient

Dimarakis et al., JTCVS2014;1-2

Thrombosis and Bleeding

A Vexing Problem in Long-term Use

Although significant progress have been made with use of VAD in patients, there is still a great deal of unknowns. The understanding of how these devices tilt the delicate intrinsic balance of bleeding and thrombosis is critical to guide therapy and to improve the long-term safety.

Contributing Factors:

- Non-physiological flow dynamics associated with device design and operation
- Non-biological materials
- Hemostatic properties and responses of patients to the above nonphysiological conditions

From Concepts to Clinical Use Systems Engineering and Collaboration

From Concepts to Clinical Use

Topologies

Pulsatile VAD

- •Pneumatic vs. Electromechanical
- •Internal vs. external

Topologies

•Ax
•Int
•Be

Integrated Design and Analysis

CFD Based Modeling of Functions and Performances

Fluid Dynamics

$$\rho \nabla \cdot (\vec{v}\vec{v}) = -\nabla p + \nabla \cdot \overline{\tau} + \rho \vec{g} + S$$

$$\nabla \cdot \vec{v} = 0$$

$$\tau = \left[\frac{1}{6} \sum (\tau_{ii} - \tau_{jj})^2 + \sum \tau_{ij} \tau_{ij}\right]^{\frac{1}{2}}; \quad i, j, k = 1, 2, 3; \quad i \neq j \neq k$$

Hemolysis

$$D_I = \frac{\Delta Hb}{Hb} \% = 3.62 \times 10^{-5} t_{\text{exp}}^{0.785} \tau^{2.416}$$

$$\frac{\partial c}{\partial t} + \left(\vec{u} \bullet \vec{\nabla}\right)c = \vec{\nabla} \bullet (D\nabla c) + S_I$$

Use of CFD in Development and Design Process

Shear-Induced Hemolysis (ovine blood)

Shear-Induced Hemolysis Species Difference

Shear-Induced Platelet Activation (Power-law Model)

Continuous Model of Platelet Activation in Devices

$$\left| \frac{\partial c_i}{\partial t} + \left(\vec{u} \bullet \vec{\nabla} \right) c_i \right| = \vec{\nabla} \bullet \left(D_i \nabla c_i \right) + s_i$$

Resting platelet: (C_{rp})

Activated platelet: (C_{ap})

Platelet released agonists: (C_{apr})

Platelet synthesized agonists: (C_{aps})

Prothrombin: (C_{pt})

Thrombin: (C_t)

ATIII: (C_{at})

Shear Dose: (sd)

$$\begin{split} s_{rp} &= -k_{pa} \cdot c_{rp} - c_{sd}^{\beta s} \cdot c_{rp} \\ s_{ap} &= +k_{pa} \cdot c_{rp} + c_{sd}^{\beta s} \cdot c_{rp} \\ s_{apr} &= +\lambda_{j} k_{pa} \cdot c_{rp} - k_{1,j} \cdot c_{apr} \\ s_{aps} &= +s_{pj} \cdot c_{ap} - k_{1,j} \cdot c_{aps} \\ s_{pt} &= -\beta \cdot c_{pt} (\phi_{at} \cdot c_{ap} + \phi_{rt} \cdot c_{rp}) \\ s_{t} &= -\Gamma \cdot c_{t} + c_{pt} (\phi_{at} \cdot c_{ap} + \phi_{rt} \cdot c_{rp}) \\ s_{at} &= -\Gamma \cdot \beta \cdot c_{t} \\ s_{sd} &= sss^{\alpha s/\beta s} \cdot cons^{1/\beta s} \end{split}$$

So far only ADP, prothrombin, thrombin, TxA2 and AT are considered in the model.

Platelet Activation in Jarvik 2000 Infant Pump

Surface Flow Visualization with Oil Dots

In-Vitro Testing of Function and Biocompatibility

RBC damage

•Plasma free hemoglobin

Platelet Activation Markers

- Platelet counts
- CD62p Expression
- Soluble CD62p concentration
- Platelet derived microparticles
- Platelet aggregates
- Platelet leukocyte aggregates

Thrombosis

- Platelet deposition
- Thrombosis formation

In-Vivo Evaluation in Animals

Intraventricular Apical Placement

Descending aorta (10 mm graft)

In-Vivo Evaluation in Animals

In-Vivo Evaluation - Methods

Hemodynamics

- Flows
 - Cardiac output (PA)
 - Device flow
- Acute
- Chronic

• Device Operating Parameters

- Speed, Current, Power
- Necropsy
 - Gross
 - Histology

• Biocompatibility/Biologic Response

- Hemolysis: pFH, LDH
- Hematology: Hct, platelet counts
- Infection: WBC/differential
- Renal Function: creatinine
- Liver Function, AST, ALT
- Platelet Activation
 - Flow cytometry
 - ELISA

Schedule

- Baseline
- Post-implantation
- Twice a week after Implantation

Hemolysis

Platelet Activation Markers

Soluble P-selectin

Platelet/Monocyte Aggregates

End-Organ Function Markers

Necropsy

Pump Thrombosis

Explanted Pump after 60 Days

Acknowledgement

Funding

- NIH/NHLBI R01 HL088100
- NIH/NHLBI R01 HL118372
- NIH/NHLBI HHSN268201000014C

Artificial Organs Laboratory

- A multidisciplinary team of surgeons, biologists, and engineers
- Ongoing projects
 - Cardiac remodeling and novel therapies (VAD unloading, stem cells, molecular)
 - Artificial organs (pediatric
 VAD, artificial pump lung)
 - Medical device related blood damage

Thank You!